Heterogeneous differences-in-differences in Stata

Eduardo Garcia Echeverri

Mexican Stata Conference, 2023

Heterogeneity in treatment effects

Outline

1 Heterogeneity in treatment effects

2 Model setup

3 Estimation in Stata

- Regression adjusted
- Inverse-probability weighting
- Augmented inverse-probability weighting
- Extended two-way fixed effects
- 4 Aggregation of treatment effects

5 Conclusion

Heterogeneity in treatment effects

Why heterogeneous treatment effects?

Classic differences-in-differences: Treatment effects are obtained by estimating

$$y_{it} = \beta_0 + \beta_1 D_{it} + \gamma_t + \gamma_g + \varepsilon_{it}$$

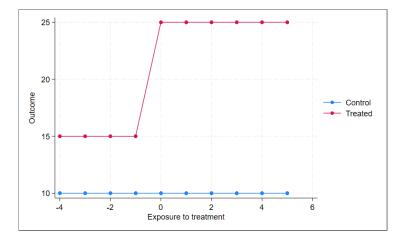
- *y*_{*it*}: **Outcome** of interest.
- Dit: Binary treatment.
- γ_t : **Time** fixed effects

 γ_g : Group fixed effects. Treatment happens at the group level. $\beta_1 = \text{ATT}$ (average treatment effect on the treated) Heterogeneity in treatment effects

Why heterogeneous treatment effects?

Classic differences-in-differences: Treatment effects are obtained by estimating

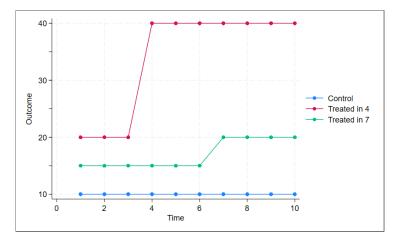
$$y_{it} = \beta_0 + \beta_1 D_{it} + \gamma_t + \gamma_g + \varepsilon_{it}$$


Implicit assumptions:

- ATT is the same irrespective of when unit is treated.
- ATT is **constant** after unit is treated.

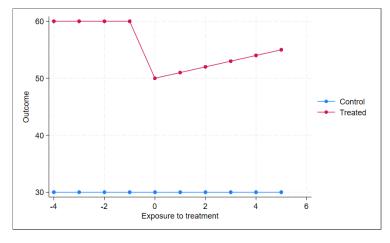
We are assuming homogeneous treatment effects.

Heterogeneity in treatment effects


Classic differences-in-differences

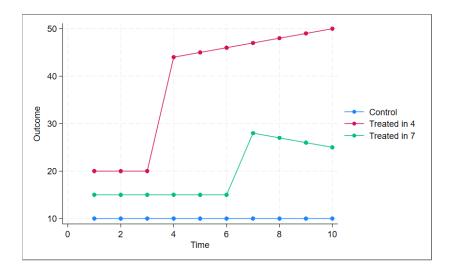
ATT = DID = difference in treated - difference in control = 10 - 0 = 10

Heterogeneity in treatment effects


Cohort heterogeneity

 $ATT_{red} = 20$ $ATT_{green} = 5$

Heterogeneity in treatment effects


Time heterogeneity

$$ATT_{t=0} = -10$$
 $ATT_{t=5} = -5$

Heterogeneity in treatment effects

Time-cohort heterogeneity

Heterogeneity in treatment effects

Heterogeneous DID

A growing literature has emerged to estimate heterogeneous ATTs:

- Callaway & Sant'Anna (2021), Wooldridge (2021), Chaisemartin and D'Haultfoeuille (2020)...
- ... and to **diagnose/understand** treatment effect heterogeneity:
 - Borusyak, Jaravel, and Spiess (2018), Goodman-Bacon (2021)...

Many of these features have been incorporated into Stata 18.

Heterogeneity in treatment effects

1 Heterogeneity in treatment effects

2 Model setup

3 Estimation in Stata

- Regression adjusted
- Inverse-probability weighting
- Augmented inverse-probability weighting
- Extended two-way fixed effects

4 Aggregation of treatment effects

5 Conclusion

Outline

1 Heterogeneity in treatment effects

2 Model setup

3 Estimation in Stata

- Regression adjusted
- Inverse-probability weighting
- Augmented inverse-probability weighting
- Extended two-way fixed effects
- 4 Aggregation of treatment effects

5 Conclusion

The heterogeneous DID model

Panel or repeated cross-sectional data with $\{1, \ldots, T\}$ periods:

- t: a specific time period.
- D_{it} : 1 if **unit is treated** in period t, 0 otherwise.
 - Irreversible treatment: Once treated, unit remains treated.
 - No unit is treated at t = 1.
- G_i: **Group** of unit *i*. When did *i* **first receive** treatment?
 - $G_i = 5$ if unit *i* first received treatment in t = 5.
 - $G_i = \infty$ if unit *i* never received treatment.

 X_i : Time-invariant **controls** for unit *i*.

Potential and observed outcomes

 $Y_{i,t}(0)$: potential outcome of unit *i* at time *t* if it is never treated.

- If $G_i = \infty$, then $Y_{i,t}(0)$ is **observed**.
- If $G_i \neq \infty$, then $Y_{i,t}(0)$ is **unobserved**.

 $Y_{i,t}(g)$: potential outcome of unit *i* at time *t* if it had been first treated at time *g*.

- If $G_i = g$, then $Y_{i,t}(g)$ is **observed**.
- If $G_i \neq g$, then $Y_{i,t}(g)$ is **unobserved**.

$Y_{i,t}$: **observed outcome** in the data.

•
$$Y_{i,t} = Y_{i,t}(0)$$
 when $G_i = \infty$.

•
$$Y_{i,t} = Y_{i,t}(g)$$
 when $G_i = g$.

Heterogeneous Treatment Effects

Group-time average treatment effects on the treated:

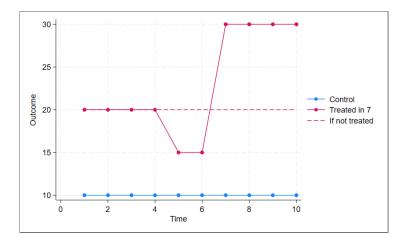
$$ATT(g,t) = \mathbb{E}\big[Y_{i,t}(g) - Y_{i,t}(0)|G_i = g\big]$$

In group g and time t, what was the average effect of being treated?

Up to $(T-1)^2$ different ATTs \Rightarrow rich heterogeneity!

Problem: ATTs are based on **unobservables** \Rightarrow **Assumptions**

Assumption 1: No anticipatory effect


Before treatment happens (for t < g),

$$\mathbb{E}\big[Y_{i,t}(g)|X,G_i=g\big]=\mathbb{E}\big[Y_{i,t}(0)|X,G_i=g\big]$$

Outcome doesn't respond in anticipation to the treatment.

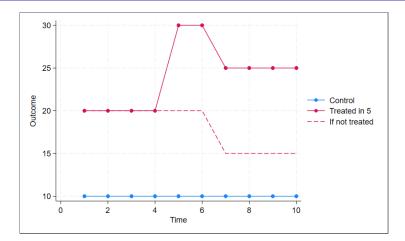
Anticipatory effects **bias** ATT estimation.

Anticipatory effects bias DID

 $DID = (30 - 15) - 0 = 30 - 15 = 15 \neq 10 = ATT$

Model setup

Assumption 2: Parallel trends with never-treated


After treatment happens $(t \ge g)$,

$$\mathbb{E} \big[Y_{i,t}(0) - Y_{i,t-1}(0) | X, G_i = g \big] = \mathbb{E} \big[Y_{i,t}(0) - Y_{i,t-1}(0) | X, G_i = \infty \big]$$

If group had not been treated, outcome would move as in the never treated group.

Violations of this assumption **bias** ATT estimation.

Non-parallel trends effects bias DID

 $DID = (25 - 20) - 0 = 5 - 0 = 5 \neq 10 = ATT$

Identification – Callaway, Sant'Anna (2021)

Theorem: Given some technical conditions, if assumptions ${\bf 1}$ and ${\bf 2}$ hold

$\Rightarrow ATT(g, t)$ can be estimated from the data.

Result also holds if **parallel trends** with **not-yet treated groups**. **Option** controlgroup lets you **choose the control group** Estimation in Stata

Outline

1 Heterogeneity in treatment effects

2 Model setup

3 Estimation in Stata

- Regression adjusted
- Inverse-probability weighting
- Augmented inverse-probability weighting
- Extended two-way fixed effects
- 4 Aggregation of treatment effects

5 Conclusion

Estimation in Stata

Commands hdidregress and xthdidregress

Estimate ATTs that vary over group/cohort and over time:

- hdidregress for cross-sectional data
- xthdidregress for panel data.

Both commands come with four estimators:

- Callaway, Sant'Anna (2021):
 - Regression adjusted
 - Inverse-probability weighting
 - Augmented inverse-probability weighting
- Wooldridge (2021):
 - Extended two-way fixed effects

Estimation in Stata

Regression adjusted

Regression adjusted estimator

Syntax:

xthdidregress ra (ovar [omvarlist]) (tvar) [if] [in] [weight],
group(groupvar) [options]

ovar: continuous outcome of interest

omvarlist: covariates in the outcome model

tvar: binary treatment

groupvar: categorical variable indicating group level at which treatment occurs. Required.

Estimation in Stata

Regression adjusted

The RA estimator

$$ATT(g,t) = \mathbb{E}\left[\frac{G_g}{\mathbb{E}[G_g]}\left(Y_t - Y_{g-1} - m_{g,t}^{nev}(X)\right)\right]$$

 $m_{g,t}^{nev}(X)$: Difference in the control group conditional on X.

•
$$m_{g,t}^{nev}(X) = \mathbb{E}[Y_t - Y_{g-1}|X, G_i = \infty]$$

The term in orange is the difference in the differences between group g and the control group.

Estimation in Stata

Regression adjusted

Heuristically

Algorithm:

- 1. keep if time is t or g-1
- 2. keep if cohort is g or C
- 3. generate $\Delta Y = Y_t Y_{g-1}$
- 4. regress ΔY on X for the group C and predict $\hat{m}_{g,t}^{nev}(X)$
- 5. generate $\widehat{TE} = \Delta Y \hat{m}_{g,t}^{nev}(X)$
- 6. summarize \widehat{TE} if cohort is g
- 7. Repeat for each g and t.

Estimation in Stata

Regression adjusted

Example: the RA estimator in Stata

Question: How is the **number of registrations of a dog breed** in the American Kennel Club affected by that **dog breed being the protagonist** in a movie?

Estimation in Stata

└─ Regression adjusted

Data

(Fictional d	og breed a	nd AKC regi	stration d	ata)
. describe				
Contains dat	a from htt	ps://www.st	ata-press.	com/data/r18/akc.dta
Observations: 1,410			Fictional dog breed and AKC registration data	
Variables:		5		1 Feb 2023 14:23
Variable	Storage	Display	Value	
name	type	format	label	Variable label
year	int	%10.0g		Year
breed	int	%34.0g	Breed	Dog breed
movie	byte	%9.0g		Was a movie protagonist
	byte	%9.0g		Won best in show in past 10 years
best	int	%9.0g		Number of AKC registrations

Estimation in Stata

└─ Regression adjusted

Data

e Ed	it View Data Tools							
10 -	💕 🗄 🖶 🗞 🎼 🔍 🔻 🖕							
	year[1] 2031							
	year breed	movie	best	registered	Variables			
1	2031 Affenpinscher	0	0		Filter variables	0070		
2	2032 Affenpinscher	0	0					
3	2033 Affenpinscher	0	0		V Name		ype Format	Value
4	2034 Affenpinscher	0	0		🗹 year	Year in	t %10.0g	
5	2035 Affenpinscher	0	0		✓ breed	Dog breed in	t %34.0g	Breed
6	2036 Affenpinscher	0	0		Pl movie	Was a movie protagonist be	yte %9.0g	
7	2037 Affenpinscher	0	0		₩ best	Won best in show in pa b		
8	2038 Affenpinscher	0	0		₩ test registered	Number of AKC registra in		
9	2039 Affenpinscher	0	0		registered	Number of ANC registra In	t %9.0g	
10	2040 Affenpinscher	0	0					
11	2031 Afghan Hound	0	0					
12	2032 Afghan Hound	0	0					
13	2033 Afghan Hound	0	0					
14	2034 Afghan Hound	0	0					_
15	2035 Afghan Hound	0	0		Variables Snapsho	de.		
16	2036 Afghan Hound	0	0		variables shapsing	6		
17	2037 Afghan Hound	0	0		Properties			
18	2038 Afghan Hound	0	0		✓ Variables			
19	2039 Afghan Hound	0	0		Name	year		
20	2040 Afghan Hound	0	0		Label	Year		
21	2031 Airedale Terrier	0	0					
22	2032 Airedale Terrier	0	0		Type	int		
23	2033 Airedale Terrier	0	0		Format	%10.0g		
24	2034 Airedale Terrier	0	0		Value label			
25	2035 Airedale Terrier	0	0		Notes			
26	2036 Airedale Terrier	0	0		4 Data			
27	2037 Airedale Terrior	0	0		Frame	default		
28	2038 Airedale Terrier	0	0		Filename	akc.dta		
29	2039 Airedale Terrier	0	0		Label	Eictiona	I dog breed and AK	(C registrati
30	2040 Airedale Terrier	0	0		Notes	11000110	- dog orced and PA	ic registion
31	2031 Akita	0	0					
32	2032 Akita 2033 Akita	0	0		Variables	5		
33				909	Observations	1,410		

Estimation in Stata

Regression adjusted

Staggered treatment

	Was a mo	vie	
	protagon	ist	
Year	0	1	Total
2031	141	0	141
2032	141	0	141
2033	141	0	141
2034	137	4	141
2035	137	4	141
2036	134	7	141
2037	119	22	141
2038	119	22	141
2039	119	22	141
2040	119	22	141
Total	1,307	103	1,410

Estimation in Stata

Regression adjusted

Output 1

. xtset breed year		
Panel variable: bro Time variable: yea Delta: 1 u		
	(registered best) (movie), group(breed) _cohort, containing cohort indicators formed by treatment variable movie and group variable breed, was added to the dat	aset
	each cohort and time:	
Cohort 2034 (9): .		
Cohort 2036 (9): Cohort 2037 (9):		
conorc 2037 (9)	done	
Treatment and time	information	
Time variable: yea		
Time interval: 203		
	d_cohort = 0 d cohort > 0	
Treachericuit		
	_did_cohort	
Number of cohorts	4	
Number of obs		
Never treated	1190	
2034	40	
2036	30	
2037	150	

Estimation in Stata

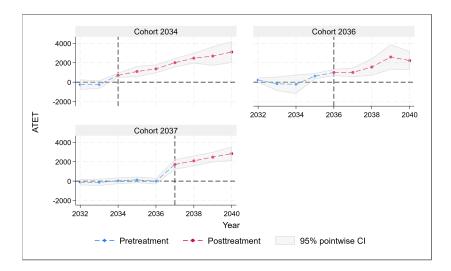
Regression adjusted

Output 2

Heterogeneous	-treatment-ef	fects regres	sion		lumber of obs lumber of pane	= 1,410 ls = 141
Estimator:	Regressio	n adjustment			uniber of purie	
Panel variabl		5				
Treatment lev	el: breed					
Control group	: Never tre	ated				
		(Std.	err. adj	usted for	141 clusters	in breed)
		Robust				
Cohort	ATET	std. err.	z	P> z	[95% conf.	interval]
2034						
year						
2032	-254.8927	266.1024	-0.96	0.338	-776.4439	266.6584
2033	-257.5329	217.9389	-1.18	0.237	-684.6852	169.6194
2034	701.1318	127.0935	5.52	0.000	452.0331	950.2304
2035	1099.044	282.0704	3.90	0.000	546.196	1651.892
2036	1367.632	225.8702	6.05	0.000	924.9343	1810.329
2037	2008.294	237.2396	8.47	0.000	1543.313	2473.275
2038	2472.624	278.2949	8.88	0.000	1927.176	3018.072
2039	2689.615	504.3324	5.33	0.000	1701.142	3678.088
2040	3110.97	568.916	5.47	0.000	1995.915	4226.025
2036						
year						
2032	216.0259	122.9107	1.76	0.079	-24.87472	456.9265
2033	-172.5154	372.0776	-0.46	0.643	-901.7741	556.7433
2034	-218.0495	504.5267	-0.43	0.666	-1206.904	770.8045
2035	621.033	156.1306	3.98	0.000	315.0227	927.0434
2036	999.0781	180.1055	5.55	0.000	646.0779	1352.078
2037	1003.333	250.5916	4.00	0.000	512.1829	1494.484
2038	1556.669	451.6914	3.45	0.001	671.3697	2441.967
2039	2590.674	662.6979	3.91	0.000	1291.81	3889.538
2040	2225.712	486.9917	4.57	0.000	1271.225	3180.198

Estimation in Stata

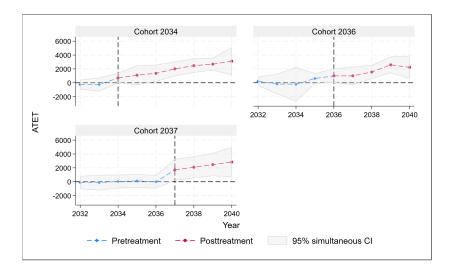
Regression adjusted


Output 3

037							
	year						
	2032	-114.582	160.0972	-0.72	0.474	-428.3668	199.2028
	2033	-127.9856	183.3941	-0.70	0.485	-487.4315	231.4603
	2034	33.40901	168.0312	0.20	0.842	-295.9262	362.7442
	2035	130.3495	166.2261	0.78	0.433	-195.4477	456.1468
	2036	-10.48288	167.5059	-0.06	0.950	-338.7884	317.8226
	2037	1717.016	268.5592	6.39	0.000	1190.65	2243.383
	2038	2086.798	278.0215	7.51	0.000	1541.886	2631.71
	2039	2473.611	268.186	9.22	0.000	1947.976	2999.246
	2040	2835.117	378.6699	7.49	0.000	2092.938	3577.296

Estimation in Stata

Regression adjusted


Graphical representation: estat atetplot

Estimation in Stata

Regression adjusted

Simultaneous confidence intervals: estat atetplot, sci

Estimation in Stata

Regression adjusted

No anticipatory effects test – estat ptrends

```
Parallel-trends test (pretreatment time period)
H0: Treatment effects in all the pretreatment periods are zero
    chi2(11) = 57.68
Prob > chi2 = 0.0000
```

Estimation in Stata

Regression adjusted

Change the control group - controlgroup()

Sometimes all units are eventually treated. We need to use as controls the not yet treated.

xthdidregress ra (registered best) (movie), group(breed)
controlgroup(notyet)

Heterogeneous-tr	eatment-effects regression	Number Number	obs panels		
Estimator: Panel variable: Treatment level: Control group:	breed				

output omitted

Estimation in Stata

Inverse-probability weighting

Inverse-probability weighting estimator

Syntax:

xthdidregress ipw (ovar) (tvar [tmvarlist]) [if] [in] [weight],
group(groupvar) [options]

ovar: continuous outcome of interest

tmvarlist: covariates in the treatment model

tvar: binary treatment

groupvar: categorical variable indicating group level at which treatment occurs. Required.

Estimation in Stata

Inverse-probability weighting

The IPW estimator

$$ATT(g,t) = \mathbb{E}\left[\left(\frac{G_g}{\mathbb{E}\left[G_g\right]} - \frac{\frac{p_g(X)}{1 - \rho_g(X)}}{\mathbb{E}\left[\frac{p_g(X)}{1 - \rho_g(X)}\right]}\right) \left(Y_t - Y_{g-1}\right)\right]$$

 $p_g(X)$: **Probability of being in group g** given X and given that observation is either in g or C.

• Generalized propensity score.

The term in orange is the **inverse-probability weight**.

Estimation in Stata

-Augmented inverse-probability weighting

Augmented inverse-probability weighting estimator

Syntax:

xthdidregress aipw (ovar [omvarlist]) (tvar [tmvarlist]) [if] [in] [weight], group(groupvar) [options]

- ovar: continuous outcome of interest
- omvarlist: covariates in the outcome model
- tmvarlist: covariates in the treatment model
 - tvar: binary treatment
- groupvar: categorical variable indicating group level at which treatment occurs. Required.

Estimation in Stata

LAugmented inverse-probability weighting

The AIPW estimator

$$ATT(g,t) = \mathbb{E}\left[\left(\frac{G_g}{\mathbb{E}\left[G_g\right]} - \frac{\frac{p_g(X)}{1 - p_g(X)}}{\mathbb{E}\left[\frac{p_g(X)}{1 - p_g(X)}\right]}\right) \left(Y_t - Y_{g-1} - m_{g,t}^{nev}(X)\right)\right]$$

 $p_g(X)$: **Probability of being in group g** given X and given that observation is either in g or C.

 $m_{g,t}^{nev}(X)$: Difference in the control group conditional on X.

Inverse-probability weight in orange. Augmented term in violet Doubly robust

Estimation in Stata

Extended two-way fixed effects

Extended two-way fixed effects estimator

Syntax:

xthdidregress twfe (ovar [omvarlist]) (tvar) [if] [in] [weight],
group(groupvar) [options]

ovar: continuous outcome of interest

omvarlist: covariates in the outcome model

tvar: binary treatment

groupvar: categorical variable indicating group level at which treatment occurs. Required.

Estimation in Stata

Extended two-way fixed effects

The TWFE estimator

Consider the extended two-way fixed effects regression:

$$Y_{it'} = \eta + \sum_{g=q}^{T} \alpha_g G_{ig} + \sum_{t=q}^{T} \gamma_t f_t + \sum_{g=q}^{T} \sum_{t=q}^{T} \tau_{g,t} D_{it} G_{ig} f_t + \varepsilon_{it'}$$

q: first treatment period

$$f_t$$
: 1 if $t' = t$, 0 otherwise.

 $\tau_{g,t} = ATT(g,t)$

Remarks:

• Covariates would enter fully interacted in the model.

Aggregation of treatment effects

Outline

1 Heterogeneity in treatment effects

2 Model setup

3 Estimation in Stata

- Regression adjusted
- Inverse-probability weighting
- Augmented inverse-probability weighting
- Extended two-way fixed effects

4 Aggregation of treatment effects

5 Conclusion

Aggregating treatment effects

You might be interested in exploring heterogeneity just by:

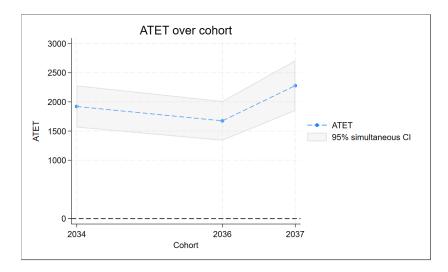
- Cohort
- Time
- **Exposure** to treatment (event studies)
- Even no heterogeneity at all

Some **post-estimation tools** come handy in this case.

Suppose you've just fitted **a heterogeneous DID model**:

xthdidregress ra (registered best) (movie), group(breed)

Overall aggregation - estat aggregation, overall


(Std. err. adjusted for 14 Robust registered ATET std. err. z P> z	41 clusters in brea	ed)
-	[95% conf. interv	al]
movie (1 vs 0) 2093.318 122.5752 17.08 0.000	1853.075 2333.	561

Aggregation by cohort

	ort		Number of obs = 1,41 Replications = 99		
	(Std. err.	adjusted for	141 clusters	in breed)	
	Observed	Bootstrap	Simult	aneous	
Cohort	ATET	std. err.	[95% conf.	interval]	
2034	1921.33	135.3652	1561.16	2281.5	
2034 2036	1921.33 1675.093		1561.16 1353.3	2281.5 1996.886	

Aggregation of treatment effects

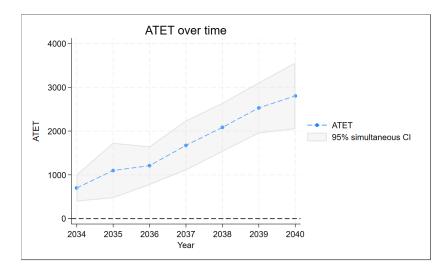
Aggregation by cohort – Graph

Aggregation by time

2040

 estat aggreg 	gation, time g	graph sci		
ATET over time	2	Number of obs = 1,410 Replications = 999		
	(Std. err.	adjusted for	141 clusters	in breed)
	Observed	Bootstrap	Simult	aneous
Time	ATET	std. err.	[95% conf.	interval]
2034	701.1318	120.8096	388.4994	1013.764
2035	1099.044	263.6189	416.8482	1781.24
2036	1209.68	172.2839	763.8421	1655.518
2037	1672.655	205.9913	1139.589	2205.722
2038	2084.658	216.9237	1523.301	2646.015
2039	2528.847	219.2507	1961.468	3096.227

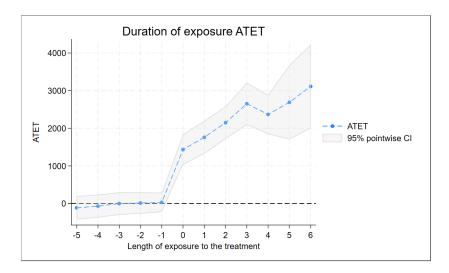
Note: Simultaneous confidence intervals provide inference across all aggregations simultaneously.


2802.171 287.8548

2057.258

3547.085

Aggregation of treatment effects


Aggregation by time – Graph

Aggregation by exposure

os = 1,410	Number of o				posure ATET	tion of ex
in breed)	141 clusters	usted for	err. adju	(Std.		
				Robust		
interval]	[95% conf.	P> z	z	std. err.	ATET	Exposure
199.2028	-428.3668	0.474	-0.72	160.0972	-114.582	-5
235.7283	-377.029	0.651	-0.45	156.3185	-70.65034	-4
299.1585	-300.982	0.995	-0.01	153.0999	9117242	-3
296.6417	-271.0486	0.930	0.09	144.8216	12.79653	-2
291.0975	-229.668	0.817	0.23	132.8508	30.71473	-1
1838.804	1030.014	0.000	6.95	206.3277	1434.409	0
2198.538	1320.385	0.000	7.85	224.0229	1759.461	1
2582.408	1712.564	0.000	9.68	221.903	2147.486	2
3209.832	2093.073	0.000	9.31	284.8928	2651.452	3
2890.949	1842.661	0.000	8.85	267.4253	2366.805	4
3678.088	1701.142	0.000	5.33	504.3324	2689.615	5
4226.025	1995.915	0.000	5.47	568.916	3110.97	6

Aggregation by exposure – Graph

- Conclusion

Outline

1 Heterogeneity in treatment effects

2 Model setup

3 Estimation in Stata

- Regression adjusted
- Inverse-probability weighting
- Augmented inverse-probability weighting
- Extended two-way fixed effects
- 4 Aggregation of treatment effects

5 Conclusion

Conclusion

Conclusion

- 1. Heterogeneous DID is a powerful tool to better understand treatment effects.
- 2. Easy to implement in Stata 18:
 - xthdidregress for panel data
 - hdidregress for repeated cross section
 - Results displayed as tables or graphs.
- 3. Treatment effects can be aggregated by:
 - Cohort,
 - Time
 - Exposure to treatment
 - Overall

Conclusion

Thank you!

Questions?