Outline

Model averaging

The Bayesiar approach

BMA

bma commands

BMA regress PIP PMP

Compare

CRI

Sensitivity

Predictions

References

Mexican Stata Conference

Introduction to Bayesian model averaging in Stata

Gustavo Sánchez

StataCorp LLC

October 26, 2023 Hermosillo, México

STATA 18

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

- Model averaging
- The Bayesian approach
- BMA
- bma commands
- Example
- BMA reg PIP PMP
- Jointness
- Compare
- CRI
- Sensitivity
- Predictions

References

Outline

- 1 Why model averaging
- 2 The Bayesian approach
 - Brief overview
 - The method
- 8 Bayesian model averaging in Stata
- 4 BMA commands
- 5 Example
 - BMA regression
 - Posterior inclusion probabilities
 - Posterior model probabilities
 - Variable inclusion dependence
 - Comparison with linear regression

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Sensitivity analysis
- Predictions

Outline

- Model averaging
- The Bayesian approach
- BMA
- bma commands
- Example BMA regression PIP PMP Jointness Compare OLS CRI
- Sensitivity Predictions

References

Why Model averaging

- In most cases, regression modeling relies on a theoretical framework that intends to derive the model that best describes the data generating process (DGP) for the outcome of interest.
- Researchers use a variety of statistical tools to find the model that is supposed to produce the best fit for the unknown DGP. For example
 - In terms of model specification: AIC, BIC, Hannan-Quinn, among others.
 - In terms of predictive accuracy: MSE, MAE, MAPE, among others.
- However, those criteria may suggest different models. Then, what if we select the wrong model?

Outline

Model averaging

- The Bayesian approach
- BMA
- bma commands

Example

- BMA regn PIP PMP
- Compored
- CRI
- Sensitivity
- Predictions

References

Why Model averaging

- Model averaging intends to address the model uncertainty and, therefore, reduce the risk of making inference and producing conclusions based on the wrong model.
- Let's consider, for example, the following model specifications (See, for example, Rizzo (2019) for an example on a model for life expectancy):

 Where:
 life_exp
 :
 Life expectancy at birth.

 food_prod
 :
 Food production index (2014-16 = 100).

 elect_acc
 :
 Electric access (% of population).

 pop_growth
 :
 Population growth.

 urban
 :
 Urban population.

 co2
 :
 CO2 emissions.

 schooling
 :
 Years of schooling.

Outline

Model averaging

- The Bayesian approach
- BMA
- bma commands
- Example BMA regression PIP PMP Jointness Compare OLS CRI Sensitivity
- Predictions

References

Why Model averaging

- Instead of focusing the empirical analysis in just one model, this approach propose estimators that produce a weighted average of a number of potentially feasible models.
- Weigths are at then at the core of this approach, and both frequentists and Bayesians propose different ways for selecting those weights. Steel (2020) provides a broad description of the methods associated to both approaches.
- But frequentists and Bayesians approaches differ in a more fundamental theoretical modeling view of the model and the parameter, so let's just have a quick overview on those differences.

The Bayesian approach

The Bayesian approach

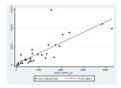
Frequentist

Data hypothetically repeatable

. list month defunciones casos uci, abbreviate(12)

Theoretical Model

casos_uci	defunciones	month
524	631	2821m11
1298	1912	2021m12
1740	5453	2022m1
691	4183	2022m2
382	1699	2022n3
436	1422	2822n4
628	1848	2022m5
601	1663	2022m6
696	3133	2022n7
219	1046	2022m8



Bayesian

Data known

. list month defunciones casos_uci, abbreviate(12)

Theoretica Model

month	defunciones	casos_uci
2021m11	631	524
2821n12	1912	1298
2022ml	5453	1740
2022m2	4183	691
2022m3	1600	382
2022m4	1422	436
2022n5	1848	628
		681
		696
2022118	1846	219
	2821n11 2821n12 2822n1 2822n2 2822n2 2822n3 2822n4	2822m11 631 2822m12 1912 2822m1 5453 2822m3 1680 2822m3 1680 2822m3 1680 2822m5 1848 2822m5 1848 2822m7 1848

(日)

The Bavesian approach

Bayesian Analysis vs. Frequentist Analysis

Frequentist Analysis

- Estimates unknown fixed parameters.
- The data come from a random sample (hypothetical repeatable).
- Uses data to estimate • unknown fixed parameters.
- p-values are conditional probability statements that assume Ho to be true.

"Conclusions are based on the distribution of statistics derived from random samples, assuming unknown but fixed parameters.'

Bayesian Analysis

- Probability distributions for unknown random parameters.
- The data are assumed to be fixed.
- Combines data with prior beliefs to get updated probability distributions for the parameters.
- It allows formulating probabilistic statements for the hypothesis of interest.

"Bayesian analysis answers questions based on the distribution of parameters conditional on the observed sample."

э

Outline

Model averaging

The Bayesian approach

BMA

bma commands

```
Example
BMA regressi
PIP
PMP
Jointness
Compare OLS
CRI
Sancitivity
```

Predictions

References

The method

• Inverse law of probability (Bayes' Theorem):

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{f(y;\theta)\pi(\theta)}{f(y)}$$

Where:

 $f(y; \theta)$: probability density function for y given θ . $\pi(\theta)$: prior distribution for θ

 The marginal distribution of y, f(y), does not depend on θ; then we can write the fundamental equation for Bayesian analysis:

 $p(\theta|\mathbf{y}) \propto L(\theta;\mathbf{y}) \pi(\theta)$

Where:

 $L(\theta; y)$: likelihood function of the parameters given the data.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

- Model averaging
- The Bayesian approach
- BMA
- bma commands
- Example
- BMA regi PIP
- PMP
- Compare
- CRI
- Sensitivity
- Predictions

References

The method

- Some prior-likelihood combinations have closed form solution.
- What about the cases with non-closed solutions, or more complex distributions?
 - Integration is performed via simulation.
 - We need to use intensive computational simulation tools to find the posterior distribution in most cases.
 - Markov chain Monte Carlo (MCMC) methods are the current standard in most software. Stata implements two alternatives:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Metropolis-Hastings (MH) algorithm
- Gibbs sampling

Outline

Model averaging

The Bayesian approach

BMA

- bma commands
- Example
- PIP
- PMF
- Jointne
- Compare
- CRI
- Sensitivity

Deferences

The method

- Links for Bayesian analysis and MCMC on our YouTube channel:
 - Introduction to Bayesian statistics, part 1: The basic concepts

https://www.youtube.com/watch?v=0F0QoMCSKJ4&feature=youtu.be

• Introduction to Bayesian statistics, part 2: MCMC and the Metropolis–Hastings algorithm.

https://www.youtube.com/watch?v=OTO1DygELpY&feature=youtu.be

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Outline

Model averaging

The Bayesian approach

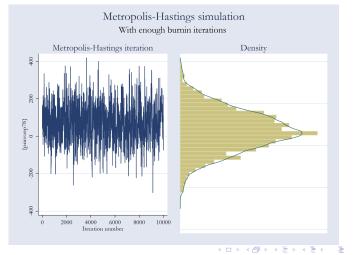
BMA

- bma commands
- Example
- BIN/
- PMF
- Jointnes
- Compare
- CRI
- Sensitivity
- Predictions

References

The method

- Metropolis–Hastings simulation
 - The trace plot illustrates the sequence of accepted proposal states for a simulation with enough burnin iterations.



900

Outline

Model averaging

The Bayesiar approach

BMA

bma commands

- Example
- BMA regi PIP
- PMP
- Jointnes
- Compare
- CRI

Sensitivity

Predictions

References

Bayesian model averaging in Stata (BMA)

• The current Stata implementation is focussed on linear regression:

$$\mathbf{y} = \alpha \mathbf{1}_n + \mathbf{X}_j \boldsymbol{\beta}_j + \boldsymbol{\epsilon}$$

Where:

, y n)':	(nx1) vector of outcome values.
:	vector of ones.
:	<i>nxp_j</i> design matrix.
:	$(p_j x 1)$ vector of coef. for model j
) :	(nx1) vector of error terms.
	:

- In addition to the standard posterior probability distributions for the regression coefficients, two probabilities are fundamental for the inference using the Bayesian approach for model averaging:
 - The posterior model probabilities (PMPs)
 - The posterior inclusion probabilities (PIPs)

Outline

Model averaging

The Bayesian approach

BMA

bma commands

Example BMA regress

PIP

PMP

Jointnes

Compare

GRI

Bradiationa

References

BMA prior probability distributions

• Let's recall our linear model specification:

$$\mathbf{y} = \alpha \mathbf{1}_n + \mathbf{X}_j \boldsymbol{\beta}_j + \boldsymbol{\epsilon}$$

• Priors for a BMA linear regression with fixed g:

$$egin{array}{rcl} M_j &\sim & \mathcal{P}(M_j) \ eta_j | lpha, \sigma, M_j &\sim & N_{p_j}(0, g\sigma^2(X_j'X_j)^{-1}) \ lpha | \sigma, M_j &\sim & 1 \ \sigma | M_j &\sim & \sigma^{-1} \end{array}$$

- Notice that in addition to the priors for the parameters $(\beta_j, \alpha, \sigma)$, BMA considers the models to be random, so a discrete model prior $(P(M_j))$ is specified over the models space $\mathbf{M}_F = M_1, M_2, ..., M_{2^p}$.
- Prior for g: fixed or random hyperprior p(g)

Outline

Model averaging

The Bayesiar approach

BMA

bma commands

Example BMA regression PIP PMP Jointness Compare OLS CRI Sensitivity Predictions

References

BMA posterior model and inclusion probabilities

 Posterior model probabilities conditional on the observed data (using Bayes theorem):

$$PMP = P(M_j|\mathbf{y}) = \frac{f(\mathbf{y}|M_j)P(M_j)}{p(\mathbf{y})}$$

Where: $f(\mathbf{y}|M_j)$: Likelihood of \mathbf{y} under model M_j . $P(\mathbf{y})$: marginal probability of \mathbf{y} over the model space \mathbf{M}_F

• We can then define the posterior inclusion probability (PIP) as:

$$PIP = \sum_{j \in J_F} I(\boldsymbol{X}_k \in M_j) P(M_j | \boldsymbol{y})$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Where I(.) is the indicator function.

Outline

Model averaging

The Bayesiar approach

BMA

bma command

Example BMA regressic PIP PMP Jointness Compare OLS CRI Sensitivity Predictions

References

BMA posterior probability distributions

Posterior distribution of β over all models:

$$g(oldsymbol{eta}|oldsymbol{y}) = \sum_{j\in J_{ extsf{F}}} g(oldsymbol{eta}|oldsymbol{y}, M_j) \mathcal{P}(M_j|oldsymbol{y})$$

Where: $g(\beta | \mathbf{y}, M_j)$ is the posterior distribution of β for a Bayesian linear regression model M_j

BMA coefficient estimates for the linear model:

$$\hat{oldsymbol{eta}}_{BMA} = E[oldsymbol{eta}|y] = \sum_{j=1}^{2^p} P(M_j|y) \hat{oldsymbol{eta}}_j$$

Where $\hat{\beta}_{j}^{'}$ is the vector of posterior mean estimates of regression coefficients based on model M_{j}

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Model averaging

The Bayesian approach

BMA

bma commands

Example

BMA regression PIP PMP Jointness Compare OLS CRI

Predictions

References

Stata's BMA suite consists of the following commands

Command	Description	
Setup		
splitsample	Split samples for training, validation and prediction	
vl	Manage large variable lists	
Estimation		
bmaregress	BMA linear regression	
bmacoefsample	Posterior samples of regression coefficients	
Graphical commands		
bmagraph	Graphical summaries	
bmagraph pmp	Model-probability plots	
bmagraph varmap	Variable-inclusion maps	
bmagraph msize	Model-size distribution plots	
bmagraph coefdensity	Coefficient density plots	
Postestimation statistics		
bmastats	Posterior summaries	
bmastats msize	Model-size summaries	
bmastats models	Posterior model and variable-inclusion summaries	
bmastatspip	Posterior inclusion probabilities for predictors	
bmastats jointness	Jointness measures for predictors	
bmastats lps	Log predictive-score	
Predictions		
bmapredict	BMA predictions	

Outline

Model averaging

The Bayesian approach

>

BMA

bma commands

Example

BMA regress PIP PMP Jointness Compare OI CRI Sensitivity

Predictions

References

Example: Life expectancy model for Colombia

 Let's work with a model for life expectancy including the 10 explanatory variables described below:

. describe life_exp food_prod elect_acc co2_transp forest_area /// urban pop_growth fertility enrol_secnd enrol_prim physicians

Variable	Storage	Display	Value	
name	type	format	label	Variable label
life_exp	double	%10.0g		Life expectancy at birth (years)
food_prod	double	%10.0g		Food prod. index (2014-16 = 100)
elect_acc	double	%10.0g		Access to electricity (% of population)
co2_transp	double	%10.0g		CO2 emiss.transp. (% of tot fuel)
forest_area	double	%10.0g		Forest area (% of land area)
urban	double	%10.0g		Urban population (% of total)
pop_growth	double	%10.0g		Population growth (annual %)
fertility	double	%10.0g		Fertility rate (births per woman)
enrol_secnd	double	%10.0g		School enrol. secondary (% gross)
enrol_prim	double	%10.0g		School enroll. primary (% gross)
physicians	double	%10.0g		Physicians (per 1,000 people)

• Annual change in a variable is specified with d as a prefix.

Outline

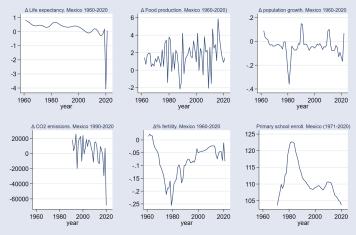
- Model averaging
- The Bayesiar approach
- BMA
- bma commands

Example

BMA regression PIP PMP Jointness Compare OLS CRI Sensitivity Predictions

References

Plot some of the series



Source: The World Bank https://data.worldbank.org/country/mexico

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ のへの

Outline

Model averaging

The Bayesian approach

BMA

bma commands

Example

BMA regression PIP PMP Jointness Compare OLS CRI Sensitivity Predictions

References

BMA regression

> durban	dpop_growth (\$simul_dir\] odels	dfertility denrol oma_enumerate_mx,r	cc co2_transp forest_area _secnd enrol_prim physicians, aplace)	///
Bayesian model	averaging		No. of obs =	22
Linear regress			No. of predictors =	10
Model enumerat			Groups =	10
			Always =	0
Priors:			No. of models =	1,024
Models: Beta	a-binomial(1	, 1)	For CPMP >= .9 =	66
Cons.: Non:	informative		Mean model size =	6.143
Coef.: Zell	lner´s g			
g: Bend	chmark, g = 3	100	Shrinkage, g/(1+g) =	0.9901
sigma2: Noni	Informative		Mean sigma2 =	0.003
dlife_exp	Mean	Std. dev.	Group	PIP
forest_area	.2237174	.0737425	4	. 95386
denrol_secnd	.0509517	.0206289	8	.95088
enrol_prim	.0616976	.0307517	9	.87058
co2_transp	0475698	.0280115	3	.83225
physicians	.3157756	.2381506	10	.73753
dfood_prod	.0084947	.0095266	1	. 55099
durban	4312485	.666253	5	.42783
delect_acc	.009009	.0149244	2	. 37956
dfertility	2195602	.9680006	7	.23576
dpop_growth	.0173422	.2024709	6	.20332
Always				
cons	-13.43001	3.930782	0	1

Note: Coefficient posterior means and std. dev. estimated from 1,024 models. Note: Default priors are used for models and parameter g.

file C:\Users\gas\Documents\conferences\Colombia\simul\bma_enumerate_mx.dta sav
> ed.

. estimates store bmareg_enum

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

- Model averaging
- The Bayesian approach
- BMA
- bma commands

Example

- BMA regression
- PIP
- PIVIP
- Compare
- CBI
- Sensitivity
- Predictions

References

Regression output

- Estimation default
 - Model enumeration (<12 predictors) (2¹⁰ = 1024 models)
 - Priors: Beta-binomial(1,1) for models (binomial model prior with an inclusion probability (IP) and a beta prior on the IP) and fixed g = 100

Results

- Little shrinkage: 100/(1 + 100) = .9901
- Mean model size: 6.143
- Top four predictors: forest_area, denrol_secnd, enrol_prim, co2_transp (PIPs>.8)
- Other predictors seem relevant too (with PIPs>.30)
- BMA estimates based on 2¹⁰ = 1024 models. 66 of those models contribute to .9 of the cumulative PMP.
- Estimation stored for some of the postimation analysis

Predictors with highest probability of inclusion bmastats pip

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

. bmastats pip, cutoff(.75) Posterior inclusion probability (PIP)

No. of obs	=	22
No. of predictors	=	10
Groups	=	10
Always	=	0
Reported	=	4
No. of models	=	1,024
Mean model size	=	6.143

	PIP	Group
forest_area	.95386	4
denrol_secnd	.95088	8
enrol_prim	.87058	9
co2_transp	.83225	3
Always		
cons	1	0

Note: Using analytical PMPs.

- Note: 6 predictors with PIP less than
 - .75 not shown.

Model

averaging

The Bayesian approach

BMA

bma command

Example

BMA regression

PIP

FIVIE

0011111855

opi

O and a little site of

Bradiationa

References

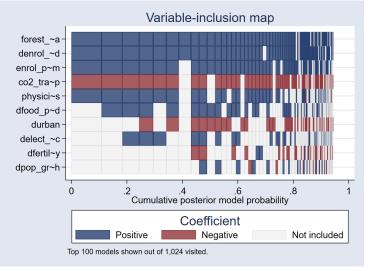
Outline

- Model averaging
- The Bayesiar approach
- BMA
- bma command
- Example
- BMA regression
- PIP
- PIVIP
- Compare
- CBI
- Sensitivit
- Predictions

References

Variable inclusion map bmagraph varmap

. bmagraph varmap, top(100) legend(rows(1)) Computing model probabilities ...



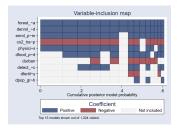
Outline

- Model averaging
- The Bayesian approach
- BMA
- bma commands
- Example
- BMA regression
- PIP
- PIMP
- Jointness
- Compa
- O - itic
- Predictions

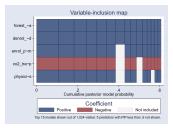
References

Variable inclusion map bmagraph varmap

. bmagraph varmap, top(15) legend(rows(1)) Computing model probabilities ...



. bmagraph varmap, top(15) pipcutoff(.6) legend(rows(1)) Computing model probabilities ...



◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

BMA regression

PMP

High posterior model probabilites bmastats models

5

. bmastats models Computing model probabilities ... Model summary Number of models: Visited = 1,024Reported = Analytical PMP Model size

Rank			
	1	.1085	5
	2	.07494	6
	3	.06061	7
	4	.05085	8
	5	.04724	6

Variable-inclusion summary

	Rank	Rank	Rank	Rank	Rank
	1	2	3	4	5
co2_transp	x	x	x	x	x
forest_area	x	x	x	x	x
denrol_secnd	x	x	x	x	х
enrol_prim	x	x	x	x	х
physicians	x	x	x	x	х
dfood_prod		x	x	x	
delect_acc			x	x	х
durban				x	

Legend:

x - estimated

Outline

Model averaging

BMA regres

Cumulative posterior model probability bmastats models, cumulative

. bmastats models, cumulative(.75) novartable Computing model probabilities ...

Model summary

Number of models: Visited = 1,024

Reported = 27

		Analytical CPMP	Model size
1	Rank		
		1 .1085	5
	:	2 .1834	6
		.2441	7
		.2949	8
		5 .3421	6
		6 .3871	7
		7 .4312	2
	1	8 .4603	9
		9 .4893	10
	1	.518	5
	1	1.5408	9
	1:	2.5598	6
	1	.5772	6
	1	4 . 5934	8
	1	5 . 6095	8
	1	. 6239	4
	1	7.6377	8
	1	.6512	6
	1	9.6644	7
	2	.6775	7
	2	1.6905	6
	2	2 .7027	4
	2	.7148	8
	2	.7259	7
	2	5 .736	3
	2	.7449	7
	2	7 .7533	7

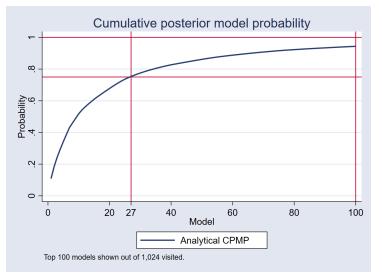
Outline

- Model averaging
- The Bayesian approach
- BMA
- bma command
- Example BMA regressi PIP PMP
- Jointnes
- CRI
- Sensitivity
- Predictions

References

Cumulative posterior model probability <code>bmagraph pmp,cumulative</code>

 bmagraph pmp, cumulative xline(27 100) yline(.75 1) xlabel(27, add) note: frequency estimates not available with model enumeration; option nofreqline implied.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Outline

Model averaging

The Bayesian approach

BMA

bma commands

Example BMA regression PIP PMP Jointness Compare OLS CRI Sensitivity

References

Model size distribution bmastats msize

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

. bmastats msize Model-size summary Number of models = 1,024 Model size: Minimum = 0 Maximum = 10

	Mean	Median
Prior Analytical	5.0000	5
Posterior Analytical	6.1426	6

Note: Frequency summaries not available.

Outline

Model averaging

The Bayesian approach

BMA

bma command

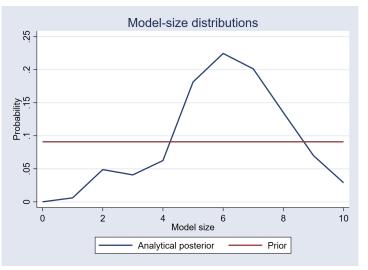
Example BMA regression PIP PMP Jointness Compare OLS CRI Sensitivity Predictions

References

Model size distribution bmagraph msize

. bmagraph msize

note: frequency posterior model-size distribution not available.



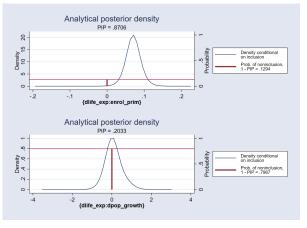
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- PMP

Posterior density for betas bmagraph coefdensity

bmagraph coefdensity {enrol prim}, name(coefd enrol prim, replace) /// legend(size(small) rows(2) pos(3))

- >
- bmagraph coefdensity {dpop_growth}, name(coefd_dpop_growth, replace) ///
- legend(size(small) rows(2) pos(3)) >
- graph combine coefd enrol prim coefd dpop growth, rows(2)



Outline

- Model averaging
- The Bayesian approach
- BMA
- bma command
- Example
- BMA regressi PIP
- PMF
- Jointness
- Compare C CRI
- Predictions

References

Variable inclusion dependence bmastats jointness

- Explore inclusion pattern for predictors using bivariate jointness measures from the joint posterior distribution of inclusion of predictors over the model space.
 - Doppelhofer –Weeks measure (DW)
 - Ley –Steel type 1 (LS1)
 - Ley –Steel type 2 (LS2)
 - Yule's Q
- Look at the threshold values for each measure in the manual entry for bmastats jointness (or click on the blue link for the thresholds in the output). Treshold values for DW:

$\begin{array}{ll} (-\infty,-2) & \text{Strong disjointness} \\ (-2,-1) & \text{Significant disjointness} \\ (-1,1) & \text{Independent inclusion} \\ (1,2) & \text{Significant jointness} \\ (2,\infty) & \text{Strong jointness} \end{array}$	DW	Interpretation
(-1,1)Independent inclusion(1,2)Significant jointness	$(-\infty, -$	2) Strong disjointness
(1,2) Significant jointness	(-2,-1)	Significant disjointness
	(-1,1)	Independent inclusion
$(2,\infty)$ Strong jointness	(1,2)	Significant jointness
	$(2,\infty)$	Strong jointness

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

- Model averaging
- The Bayesian approach
- BMA
- bma command
- Example
- BMA regressio
- Jointness
- Compare OLS CRI Sensitivity

References

Variable inclusion dependence bmastats jointness

- Explore inclusion pattern for predictors using bivariate jointness measures from the joint posterior distribution of inclusion of predictors over the model space.
 - Doppelhofer –Weeks measure (DW)
 - Ley –Steel type 1 (LS1)
 - Ley –Steel type 2 (LS2)
 - Yule's Q
- Look at the threshold values for each measure in the manual entry for bmastats jointness (or click on the blue link for the thresholds in the output). Treshold values for DW:

DW	Interpretation
$(-\infty, -2)$	Strong disjointness
(-2,-1)	Significant disjointness
(-1,1)	Independent inclusion
(1,2)	Significant jointness
$(2,\infty)$	Strong jointness

Outline

Model averaging

The Bayesian approach

BMA

bma commands

Example BMA regression PIP PMP Jointness

Compare O CRI Sensitivity

References

Variable inclusion dependence bmastats jointness

. bmastats jointness durban co2_transp forest_area dfood_prod,dw Doppelhofer-Weeks jointness

	durban	co2_transp	forest_area	dfood_prod
durban		7318593	.4996025	1.523982
co2_transp	7318593		-2.381376	.7966998
forest_area	. 4996025	-2.381376		1.088441
dfood_prod	1.523982	.7966998	1.088441	•

Notes: Using analytical PMPs. See thresholds.

- co2_transp and forest_area are strong substitutes: when one of them is included in the model, the other does not add significant explanatory power for change in life expectancy.
- dfood_prod and durban are significant complements: Each of them add relevant information when they are both included as predictors in the same model.

Outline

Model averaging

The Bayesian approach

BMA

bma command

Example

PIP

PMP

Jointness

Compare OLS

CRI

Sensitivity

Predictions

References

Compare bmaregress VS. regress

• Let's use the suite of collect commands to generate a table with the results from OLS and BMA:

```
. collect clear
. collect create bma compare
 collect r b:
                                                             111
      regress dlife exp dfood prod delect acc co2 transp
                                                             111
>
                 forest_area durban dpop_growth dfertility
                                                             111
>
                 denrol secnd enrol prim physicians
>
 collect r b=e(b bma):
                                                             111
     bmaregress dlife exp dfood prod delect acc co2 transp ///
>
                 forest area durban dpop growth dfertility
                                                             111
>
                 denrol secnd enrol prim physicians
>
collect dims
. collect label levels program class eclass "ols" nclass "bma reg"
. collect style cell, nformat(%5.2f)
. collect style header result, level(hide)
. collect style column, extraspace(2)
. collect style row stack, spacer
```

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Model averaging

The Bayesian approach

BMA

bma commands

Example BMA regression PIP PMP Jointness Compare OLS CRI Sensitivity Predictions

References

Compare bmaregress VS. regress

. collect layout (colname#result) (program_class)

Collection: bma_compare Rows: colname#result Columns: program_class

Table 1: 21 x 2

	ols	bma_reg
dfood_prod	0.02	0.01
delect_acc	0.02	0.01
CO2 emiss.transp. (% of tot fuel)	-0.05	-0.05
Forest area (% of land area)	0.21	0.22
durban	-0.82	-0.43
dpop_growth	0.01	0.02
dfertility	-0.80	-0.22
denrol_secnd	0.05	0.05
School enroll. primary (% gross)	0.08	0.06
Physicians (per 1,000 people)	0.33	0.32
Intercept	-14.86	-13.43

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ● ●

Outline

Model averaging

The Bayesian approach

BMA

bma commands

Example BMA regressio PIP PMP Jointness Compare OLS

CRI Sensitivity Predictions

References

Compare bmaregress VS. regress

- Some beta estimates are pretty close, particularly the ones that were present in most models with bmaregress.
- Do the reported betas represent point estimates or summary statistics from a posterior distribution?
- Does any of the two sets of estimates correspond to the true model?
- How do you determine whether the included variables are relevant to explain the outcome variable?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Model averaging

The Bayesian approach

BMA

bma commands

Example BMA regress PIP PMP

Jointness

CBI

Sensitivity Predictions

References

How about credible intervals for the BMA estimation

- The regression output with fixed g reports analytical means and standard deviations.
- However, analytical formulas for the credible intervals are much more involved, and they are not currently implemented.
- The credible interval limits can be estimated from a sample of the posterior distributions of the coefficients. The sample is generated with <code>bmacoefsample</code>
- Then bayestats summary can be used to get the credible interval limits.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Model averaging

The Bayesian approach

BMA

bma command

EXample BMA regression PIP PMP

Jointness

CRI

0111

Sensitivity

References

Credible Intervals with bayestats summary

. estimates restore bmareg_enum (results bmareg_enum are active now) . bmacoefsample,rseed(123) Simulation (10000):5000....10000 done . bayesstats summary

Posterior summary statistics

MCMC sample size = 10,000

					Equal-	tailed
	Mean	Std. dev.	MCSE	Median	[95% cred.	interval]
dlife_exp						
dfood_prod	.008471	.0094742	.000095	.0058945	0	.0283774
delect_acc	.0090061	.0149449	.000149	0	0	.0467779
co2_transp	0476273	.0281324	.000281	0540539	0928139	0
forest_area	.2228425	.0751102	.000751	.2329875	0	.3397013
durban	4340334	. 66432	.006643	0	-2.073307	.0172046
dpop_growth	.018259	.2066398	.002066	0	398241	. 6208839
dfertility	2271458	.9803636	.009804	0	-3.429898	1.131774
denrol_secnd	.0509952	.0209893	.000208	.0510589	0	.0921971
enrol_prim	.0619294	.0309827	.00031	.0676031	0	.1119484
physicians	.3146744	.2391575	.002392	.3617826	0	.7245469
_cons	-13.42049	3.968817	.039688	-14.05391	-19.80799	-4.735401
sigma2	.00349	.0023631	.000024	.0027768	.0013113	.0097628
g	100	0	0	100	100	100

Outline

Model averaging

The Bayesian approach

BMA

bma commands

```
Example
BMA regressio
PIP
PMP
Jointness
Compare OLS
CBI
```

Sensitivity Predictions

References

Sensitivity analysis: Random g-prior (Header)

• Let's specify a robust random prior for the g parameter:

```
. bmaregress dlife exp dfood prod delect acc co2 transp forest area
                                                                          111
      durban dpop growth dfertility denrol secnd enrol prim physicians, ///
>
      qprior(robust) rseed(123) saving(bma robust, replace) notable
>
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging
                                                     No. of obs
                                                                              22
Linear regression
                                                     No. of predictors =
                                                                              10
MC3 and adaptive MH sampling
                                                                Groups =
                                                                              10
                                                                Alwavs =
                                                                               ٥
                                                     No. of models
                                                                        =
                                                                             386
                                                        For CPMP >= .9 =
                                                                             126
                                                     Mean model size
                                                                           6.607
Priors:
                                                                        =
  Models: Beta-binomial(1, 1)
                                                     Burn-in
                                                                           2,500
                                                     MCMC sample size
   Cons · Noninformative
                                                                        = 10,000
   Coef.: Zellner's g
                                                     Acceptance rate
                                                                        = 0.5987
       q: Robust
  sigma2: Noninformative
                                                     Mean sigma2
                                                                           0.005
                                                                        =
Sampling correlation = 0.9540
file bma robust.dta saved.
```

 The sampling correlation can be checked as an indicator for convergence. It measures the correlation between the analytical posterior model probabilities (PMPs) and their MCMC estimates based on sampling frequencies.

>

>

Outline

Model averaging

The Bayesian approach

BMA

bma commands

Example

PIP

lointnoss

Compare

0.01

- ...

Sensitivity

Predictions

References

Sensitivity analysis: Random g-prior (Estimation)

. bmaregress dlife_exp dfood_prod delect_acc co2_transp forest_area ///

durban dpop_growth dfertility denrol_secnd enrol_prim physicians, ///

gprior(robust) rseed(123) saving(bma_robust, replace) noheader

Burn-in ... Simulation ... Computing model probabilities ...

dlife_exp	Mean	Std. dev.	Group	PIE
denrol_secnd	.0478065	.0235847	8	. 9199
forest_area	.1976912	.0960191	4	.9139
co2_transp	0427626	.0284823	3	.8318
enrol_prim	.0571541	.0364731	9	. 8228
physicians	.2614008	.2477664	10	.7025
dfood_prod	.0086104	.0102062	1	. 581
durban	4821421	.7148029	5	. 5252
delect_acc	.0105903	.0174731	2	. 4774
dfertility	4020217	1.398836	7	. 4264
dpop_growth	.0343917	.3326273	6	.4056
Always				
	-12.06564	4.653832	0	1

Note: Coefficient posterior means and std. dev. estimated from 386 models. Note: Default prior is used for models.

	Mean	Std. dev.	MCSE	Median	-	tailed interval]
g	30.43109	142.2239	3.71803	18.19193	4.112701	94.26857
Shrinkage	.9353532	.0479047	.001194	.9478948	.8044086	.9895033

file bma_robust.dta saved.

. estimates store bma_robust

```
Outline
```

```
Model
averaging
```

```
The Bayesiar approach
```

BMA

```
bma
commands
```

```
Example
```

```
BMA reg
PIP
PMP
```

Jointness

```
CRI
```

```
Sensitivity
```

```
Predictions
```

References

Sensitivity analysis: Model prior (Header)

file bma mprior.dta saved.

 Let's specify a binomial prior for the inclusion probabilities for some of the coefficients:

```
. bmareqress dlife exp dfood prod delect acc co2 transp forest area
                                                                           111
       durban dpop growth dfertility denrol_secnd enrol_prim physicians,
                                                                           111
>
       mprior(betabinomial 2) gprior(hyperg 3)
                                                                           111
>
       rseed(123) saving(bma mprior, replace) notable
>
Burn-in
Simulation ...
Computing model probabilities ...
Bayesian model averaging
                                                     No. of obs
                                                                              22
                                                                        =
Linear regression
                                                     No. of predictors =
                                                                              10
MC3 and adaptive MH sampling
                                                                Groups =
                                                                              10
                                                                Alwavs =
                                                                               0
                                                     No of models
                                                                             426
                                                                        =
                                                        For CPMP >= .9 =
                                                                             160
                                                     Mean model size
                                                                           4.932
Priors:
                                                                        =
 Models: Beta-binomial. mean = 2
                                                                           2.500
                                                     Burn-in
                                                                        =
   Cons · Noninformative
                                                     MCMC sample size
                                                                       = 10,000
  Coef.: Zellner's g
                                                     Acceptance rate
                                                                        = 0.6194
       g: Hyper-g(3)
  sigma2: Noninformative
                                                     Mean sigma2
                                                                           0.007
                                                                        =
Sampling correlation = 0.8889
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Sensitivity

Sensitivity analysis: Model prior (Estimation)

. bmaregress dlife exp dfood prod delect acc co2 transp forest area 111

- durban dpop growth dfertility denrol secnd enrol prim physicians, 111 > 111
- mprior(betabinomial 2) gprior(hyperg 3) >

rseed(123) saving(bma mprior, replace) noheader

Burn-in

>

Simulation ...

Computing model probabilities ...

dlife_exp	Mean	Std. dev.	Group	PIF
forest_area	.1902372	.1014379	4	. 8571
denrol_secnd	.0486305	.0282031	8	.8548
enrol_prim	.0437142	.0390415	9	. 6587
co2_transp	0348878	.0323326	3	. 6542
physicians	.1915191	.2527384	10	. 4847
durban	3961861	.706564	5	. 3739
dfood prod	.0050693	.0092194	1	. 3379
dfertility	3701969	1.364219	7	.2748
delect acc	.005283	.0143608	2	. 2329
dpop_growth	.0427503	.2770385	6	.2026
Always				
	-10.47968	4.994059	0	1

Note: Coefficient posterior means and std. dev. estimated from 426 models.

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
g	31.81657	79.80838	1.84292	17.48761	3.479734	126.1176
Shrinkage	.9323111	.0564595	.001458	.9459097	.7767722	.9921333

file bma_mprior.dta saved.

. estimates store bma mprior

Outline

Model averaging

The Bayesian approach

BMA

bma commands

Example

PIP

PMF

Jointness

Compare

CRI

Sensitivity

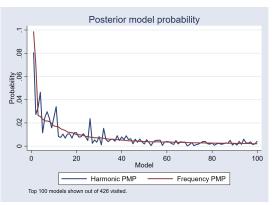
Predictions

References

Let's check for convergence for the MCMC simulation

 Another tool to check convergence corresponds to the plot for the posterior model probability (pmp)

```
. estimates restore bma_mprior
(results bma_mprior are active now)
. bmagraph pmp
```



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Outline

Model averaging

The Bayesian approach

BMA

bma commands

```
Example
BMA regression
PIP
PMP
Jointness
Compare OLS
CRI
Sensitivity
```

Predictions

References

Sensitivity analysis: Comparison with <code>bmastats lps</code>

- As stated in the manual, LPS corresponds to the negative of the log of the posterior predictive density evaluated at an observation.
- This measure can be used to evaluate the out of sample predictive performance, and also to evaluate model fit when making in sample comparisons for different models.
- The model with the smallest LPS should be selected. In the result below, the default model (bmareg_enum) would be the best alternative.

```
. bmastats lps bmareg_enum bma_robust bma_mprior,compact
Log predictive-score (LPS)
Number of observations = 63
```

LPS	Mean	Minimum	Maximum
bmareg_enum	1.908033	-1.858614	36.77494
bma_robust		-1.661124	37.65425
bma_mprior		-1.546922	36.7759

Notes: Results using analytical and frequency PMPs. Result bma_robust has the smallest mean LPS.

- Outline
- Model averaging
- The Bayesian approach
- BMA
- bma commands
- Example BMA regressio PIP PMP Jointness Compare OLS CRI Sensitivity Predictions

References

BMA predictions

- Let's finish our exercise obtaining the predictions for the mean of the outcome variable.
 - Analytic mean prediction.

```
    estimates restore bmareg_enum
(results bmareg_enum are active now)
    bmapredict pmean, mean
note: computing analytical posterior predictive means.
```

• Use bmaccefsample to produce the simulated mcmc data
with the robust gprior.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

```
    estimates restore bma_robust
(results bma_robust are active now)
    bmacoefsample, saving (bma_coef, replace)
    Simulation (10000): ....5000....10000 done
file bma_coef.dta saved.
```

Outline

Model averaging

The Bayesiar approach

BMA

bma commands

Example

PIP

PMP

Jointnes

Compare

CRI

Predictions

References

BMA predictions

We can now obtain the predicted mean and its credible intervals:

. bmapredict pmean_simul, mean mcmcsample rseed(123) note: computing posterior predictive means using simulation. Computing predictions ...

. bmapredict cri_l cri_u, cri rseed(123) note: computing credible intervals using simulation. Computing predictions ...

. summarize dlife_exp pmean* cri*

Variable	Obs	Mean	Std. dev.	Min	Max
dlife_exp	61	.2491148	.6138077	-4.069	.814
pmean	22	.1900455	.1577893	1105771	.4442372
pmean_simul	22	.1899677	.1481466	0882326	.4322272
cri_l	22	.0119365	.1436502	2576388	.2457577
cri_u	22	.3675655	.1402754	.1082546	.6014318

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

- Model averaging
- The Bayesian approach
- BMA
- bma commands
- Example BMA regression PIP PMP Jointness Compare OLS CRI Sensitivity
- Predictions

References

Summary

- Model averaging intends to account for model uncertainty.
- BMA provides the tools to perform this kind of analysis based on posterior probability distributions.
- BMA can be helpful in determining the most important predictors for your model.
- Even if you plan to work with just one model, BMA can be used as an exploratory tool. For example, you can look at the interrelations across predictors.
- BMA can be used for inference and prediction.
- Just like with any other Bayesian estimation, sensitivity analysis should be performed.

Outline

- Model averaging
- The Bayesian approach
- BMA
- bma commands
- Example
- BMA reg PIP
- PMP
- Compare O
- CRI
- Sensitivity
- Predictions

References

References

- Rizzo, Taylor. (2019), "A panel data study of the determinants of life expectancy in low income countries". Honor Thesis. Bryant University.
- Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@